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ABSTRACT for the constant of proportionality of the probability dibu-

In this paper we present a statistical model with a nonions - a necessity for classification, and (3) reliance on en
symmetric half-plane (NSHP) region of support for two- €rgy “clique” functions which are non-intuitive and indite
dimensional continuous-valued vector fields. It has the simfepresentations of the statistical dependencies.

plicity, efficiency, and ease of use of the well-known hid-  |n causal models, the neighborhood system is one-sided
den Markov model (HMM) and associated Baum-Welch alyith statistical dependence expressed only in terms oft“pas
gorithms for time-series and other one-dimensional probdata. This allows computation of the joint probability digns
lems. At the same time, it is able to learn textures on a twofunction (PDF) of the entire field of vectors in a recursive
dimensional field. We describe a fast approximate forwargnanner. Additional advantages are the reliance on direct in
procedure for computation of the joint probability density tuitive conditional dependencies and the ability to systhe
function (PDF) of the vector field as well as an approximateandom fields in one pass. Among causal models the Markov
Baum-Welch algorithm for parameter re-estimation. We tesiesh is a very tractable model that expresses dependencies

the method using synthetic textures. in terms of just two neighboring pixels [4], [5]. The simplic
ity of the Markov mesh models, however, may limit the use-
1. INTRODUCTION fulness of the model [1], [6]. The non-symmetric half-plane
1.1 Goal (NSHP) region of support (ROS) consists of four neighbor-

_ ) ) ing pixels and provides the most general causal model [6].
Lets j be a discrete random variable taking values between . . .
i The discussion up to now has assumed thatare di-

1 andM on a two-dimensional field £i < Nj, 1< j < S )

N,. Assume that we cannot obseryg directly but instead rectly observable. When statistically modelig another
observe aD-dimensional continuous valued random vector/@Yer of codeIeX|ty IS addedl esr?emally wpen tr)(/jl_ng to es- |
“pixel” xi ; € %° whose probability density function (PDF) timate model parameters. In the case of one-dimensiona

iy i s blems such as in speech recognition, the parameter es-
depends on the state at pikgj and is denoted bp(x; j|s j).  PrOP" . N :
We would like to (1) model the statistical behavior of the timation problem is handled very efficiently using the Baum-

; : ; Welch algorithm [3]. Unfortunately, théorward procedure
glestgr?;?n:ea?hdeojrgirﬂf g[)(lg)oﬁstﬂgaeﬁiﬁgii;ani&gi? japdl(i) andbackward procedurecomponents of the Baum-Welch al-

i <Ni. 1< i<N-aiventhe m | parameters. gorithm whic_h recursi_vely and efficiently compute the j_oint
<N 1< < N giventhe model parameters PDF of the field of noisy measurments, do not generalize to
1.2 Previous Work the NSHP two-dimensional model.

Real-world patterns and textures exhibit complex statiti In this paper, we demonstrate approximate equivalents to
dependencies between neighboring pixels. In order to mod&fe forward procedure and backward procedure. The result

these dependencies in a tractable way, we often assert the@n approximate Baum-Welch algorithm for estimating the

Markov property This property holds that the state of the parameters of the NSHP Markov model as well as the obser-

system at a given pixel conditioned on the entire field or par¥ation PDFs.

of the field can be expressed in terms of only the states of the

of neighboring pixels. The choice of tmeighborhoochas

a profound affect on the properties of the model [1] [2], [6]. 1.3 Non-symmetric half-plane (NSHP) Model.

We can classify the models into two subclassesisaland

non-causal The NSHP neighborhood system has been used for two-
In non-causal models, the conditional statistical dependimensional autoregressive analysis and image and texture

dence extends in all directions and the neghborhood of & pixanalysis [7],[8], [6]. The NSHP model is based on ordering

surrounds the pixel itself. Although this is probably a bett the pixels in an image by scanning in a raster pattern (see fig-

representation of real-world processes, the statistitalygis  ure 1). As we scan the plane from left to right, and bottom to

of such fields requires the mathematics of Gibbs fields and itop, when we reach pixel “A”, we have already visited “B”,

associated limitations. Limitations include (1) the nsitys “C”, “D”, and “E”. Because each of the pixels in the ROS are

of using iterative methods to generate synthetic fields fronin the “past”, we can construct a recursfeeward procedure

the model, (2) the inability to find a closed-form expressionthat computes state probabilities based on “past” pixels.
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the right hand side (RHS) are not equivalent to the data con-
dition X j~ used on the left hand side (LHS) and (b) the
joint probability pi j(m,r,s,t,u/X . j-) is approximated by
the product of the marginals. Although the RHS expression
is approximate, it (a) depends only upon data that is strictl
contained in the conditioX .; j». and (b) is a probability on
(m,r,s,t,u). Thus, the resultis still a valid PDF and produces
inthe end a valid PDF oK. This is an important observation
because the maximization of the resulting approximate data
field PDF over the model parameters would not be a valid
approach if this were not true.

The a posteriori probability is denoted byJ,iﬁj and is

computed b dating (1) using the data at pix¢l
Figure 1: lllustration of the neighbohood system of the non- Pu y updating (1) using pixg

symmetric half plane model (NSHP). Pixel A is represented . C(miX Cm
statistically in terms of neighbors B,C,D, and E. ayl = pij(MXij) = Mp"J( X i) PO M) ;@

Zl P (N X i) p(xij|n)

Index (j)

Index (i)

2. MATHEMATICAL ALGORITHM DESCRIPTION wherep(x_|m), m=1...M, are the state PDFs represented
2.1 Notation and mathematical definition of the NSHP ~ as Gaussian mixtures [3]. _ .
model. The joint PDF of the data up to and includirg; can be

. . recursively computed in parallel:
Letxj; € %P be the dimensiod data (feature vector) at Hrsively putedinp
plxeln|,J yvhere ISi<N, 1< < Nz We”('jgflne t_he_past p(Xij)) = pXi_1j)p(xij|Xi 1)
data”X . i~ as all data occurring “beforex; ; that is either = p(Xi_1j) p(xij|X

to the left or below and not including j. More precisely, M <ii>)
. . L L L = p(Xi-zj) > p(xijm) pij(mXaijs).
<i,j>={",j'} : (" <i AND j'=]j) OR (j/ <j). =1 @)
We also define the “past and current da¥’; as the union When the algorithm reaches the last pixe(Ny, j = Np),

of X i~ andx; ;. We definep; j(m X j-) as thea priori the joint PDF of the entire field is given by

probability of statem at pixeli, j given all data up to but not

includingx; ;. Similarly, we definep; ;(m|X; ;) as thea pos- L(X) = log p(Xny N, )-

teriori probability of statem at pixeli, j given all data up to o

and includingy; j. Let the index variabless,t,uindex over ~2:2.1 Initialization N

the states of the neighbor pixels (“B”, “C”, “D", and “E”, The forward procedure (1), (2), (3) assumes thatahé at
respectively in figure 1). LeM be the number of possible ]| four neigbors have already been calculated. To initéli

states. the algorithm, we begin with the first pixél= 1, j = 1). For
this, we need tha priori state probabilitiegr(m), 1 < m<
2.2 NSHP forward procedure. M. Then, we can progress through the first row of pixels us-

The forward procedure in HMM terminology [3] recursively ing the well-known HMM forward procedure. For this we
computes the state probabilities at each pixel. It also conf’eed the 1-D state transition matrix (STR)(m) = Pr(s; =
putes the joint probability of all the data given the model,Ms-1 = U). When we reach the first pixel of the second row,
which is needed in a classifier. We can recursively computé/® need a reduced version @fs;.u(m) since there is no
the state probabilities as follows. In the first step of the fo Pixelimmediately to the left (pixel “E” in figure 1). There is

ward procedure we compute tagpriori probability also no pixel underneatndto the left pixel “B” in figure 1),
however if we choose, we can wrap data around to that the

M M M last pixel on the first row takes the place of pixel “B”. Us-

piimMXgj>) = ; pij(mr, st u X j>) ing this approach of wrapping around pixel “B”, the reduced
S=
M

,,
Il

c

!

STM is M® — by— M and is denoted b, st(m). The ini-
tialization is a straight-forward simplification of (1), X243)
made by removing the indaxand associated factors.

1R

Pi—1,j-1(rXi-1,j-1)
r=ls=lt=lu=1 2.2.2 Synthesis of Random fields.

Pi,j-1(8Xi j-1) Pi+1,j-1(t|Xit1,j—1)  Just as the forward procedure is analogous to the forward
procedure of the HMM, the synthesis of discrete random
Pi—1,j(U[Xi-1j) Crstu(m), fields is directly analogous to the Markov chain. To syn-
(1) thesize a random field from the model, we first synthesize a
whereC; st y(m) is the M* x M state transition matrix. The discrete random field, then as a second step, synthesize fea-
expression that replaces j(m,r,s,t,uX.j>) uses only ture values from the state PDFs given the chosen states at
guantities that have been previously computed. It is approxeach pixel. State synthesis is an algorithm directly pakall
imate because (a) the data conditions used in the terms ¢a the forward procedure: we use the STM to determine the



state probabilities of th&1 states at a given pixel given the 2.4 NSHP Baum-Welch algorithm.
already-chosen states of the “past” neighbors, selectithe d

crete random variable, then continue to the next pixel. We now describe an algorithm that parallels the well-known

Baum-Welch algorithm for the HMM [3]. The state probabil-
ities given all the data are denoted pin HMM terminology

2.3 NSHP backward procedure. [3]. Let .

, , il = pij(mX),
Only the forward procedure is needed to compute total field ’
probability given the model. The time-reversed versionwhereX is all the data. We have
called thebackward procedurf8], is needed as a component

: : i.j pij
of theBaum Welchalgorithm to re-estimate the model param- Yol ~ Om Pm
eters [3]. Unfortunately, it is impractical to create a NSHP m Za' J 3;(1
version of the backward procedure that follows the spirit of

the one-dimensional version because the NSHP neighbor-
hood system is not a simply ordered Markov model. The\Note that denominator is just the numerator summed over
state transition matrixCr st u(m) in eq. 1), is of dimen- so computlng/m can be done in two steps: (a) multiplying
sion M4-by-M. To implement the backward procedure, we ai/ andBi together, then (b) normalizing so thdg sums
would require the backward version @f; st y(m), denoted to 1 overm.
by Crst (M), which must also be of the same dimensions, ~We can usey/ to detect likely instances of certain states
In the one-dimensional backward procedure, it is srmplyln the data. We can also use it to re-estimate state transi-
the transpose of the forward STM. The backward procedurion probabilitiesC; st u(m) as well as the state likelihood
uses backward versions of the reduced STMs for initializafunctionsp(xi j|m), which are represented by Gaussian mix-
tion analogous to the forward procedure (denotedbym),  tures. We can approximate tBaum Welctalgorithm to re-
AB(m), B, (m)). For the NSHP backward procedure, we €SimateCrst.u(m) using
have two choices, resulting in two different algorithms: TR ]

Cns,t,u(m) = i ij Vr . VS’J

1. NSHP-Symmetric algorithm: Assume that the problem (6)
is 180-degree symmetric and LSést u(M) = Cyrst.u(m). . %'—171'—1 %—1,1'
This can be used for textures that are symmetrrc (in the '
sense of rotating them by 180 degrees). followed by a normalization operation to insure that
2. NSHP-Non-symmetric algorithm: EstimateCyy; ,(m) .
separately. This adds to the number of parameters zcr.s,t,u(m)—
that must be estimated but allows applicability to non- m
Symmetric textures. ) The same formula, applied on the 180-degree rotated data
LetY;j andY.; ;. representuture datawith respect(ai,  field can be used to estima@ps, ,(m) if for the non-
inclusive and exclusive of; j, respectively. The NSHP back- symmetric option. Re-estimation of state PDFs, which can
ward procedure, analogous to (2) is given by be represented by Gaussian mixtures, follows the 1-D ap-
N proach [3].
n o= p(mYaigs)
3. EXPERIMENTAL RESULTS
Laud 3.1 Synthetic Data
~ Z;Z\Z Pis1j+1(rYisejt1) ' y . )
(4) We created a 180-degree symmetric synthetic data class from
a notional blue ellipse filled with green on a red background.
Pij+1(8Yij+1) Pimvj+1(t[Yiogj+1) Examples of the data are shown in figure 2. The data are
three-dimensional (RGB) feature vector with additive Gaus
Pis, (U[Yisa,j) CPeyy(m). sian noise. The ellipse is randomly positioned in the plane.

We also created a non- symmetric synthetic texture data clas
To continue the recursion, we also need the data-updatdePm repeating triangles in a green field (figure 3).

A .
probabilities ofBy’, denoted bydh: 3.2 NSHP-Symmetric Model

i i - We trained the NSHP-symmetric model with= 3 discrete
&l = pij (M) = Bl p(xi jIm). states on 30 samples of the symmetric texture from figure
. ) 2. The state PDFs were represented by a single Gaussian
Equation (4) can then be rewritten (mixture with 1 component) and was initialized randomly in
thirty-two random trials. The algorithm was halted if thglo

MMMM Gl gL gL+l likelihood began to decrease. The best random trial was used
z 55 & A representation of thg probabilities for one data sample is
r=ls=1t=lu=1 (5  shown in figure 4. This can be compared with the data in
i+1,] figure 2. The NSHP model easily generates random fields
Y Crst u(m). as shown by the example in figure 5. The random fields can

be compared with figure 4. Clearly the NSHP model has suc-
Initialization is analogous to the forward procedure. ceeded in learning the synthetic pattern. When we trained th
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Figure 2: One example of the symmetric “ellipse” syntheticFigure 4: Gamma probabilities for the example in figure 2.
data field. Rotating the image by 180 degrees produces arhe image is coded with a color representing the most likely

equally valid sample. Data is a three-dimensional featur@tate as determined by . Red: state 1, green: state 2, blue:
vector rendered as an RGB image. state 3.
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Figure 3: One example of the non-symmetric synthetic dat&igure 5. Synthetic random field generated by the NSHP
field. Rotating the image by 180 degrees does not producgymmetric model trained on the data in figure 2.

a valid sample. Data is a three-dimensional feature vector

rendered as an RGB image.

random field. Since each feature vector from the origi-
nal field is replicated 5 times, the new higher-dimensional
symmetric model on the non-symmetric data and synthesizdield is redundant. Nevertheless, the forward procedure jus
random fields, we obtained figure 6. As we would expect, welescribed provided a PDF value for the field of extended
see character in the synthetic pattern of triangles, buetise  vectors. When we synthesize random fields from the non-

no apparent up or down. symmetric model on extended feature vectors, and obtained
figure_8, there is the appearance of better texture synthesis
3.3 NSHP Non-Symmetric Model than figure 7.

When we trained the non-symmetric model on the nonz 5 congitional-Extended feature (CEF) vector model.
symmetric texture in figure 3 and synthesized random fields,

we obtained figure 7. Here, we see clearly the upwardAs we explained, the forward procedure operating on the ex-
pointing triangles. tended feature vectors produces an exact PDF of the field of

3.4 Extended feature (EF) vector model.

In hidden Markov models, to which the algorithm we have
described belongs, the statistical relationship betwegsred

and its neighbors is based on discrete states only. If the num
ber of states is small, we do not have the benefit of accu-
rately predicting the color of a given pixel from the color of
its neighbors except through their discrete states. This ca
limit the usefulness of the models. From a strict appligatio
of Bayes theorem to develop a joint PDF of the noisy vector
field, there is no reason we cannot also use the feature val-
ues in the neighboring pixels to assist in the prediction. To

this end, we create at each pixel an extended feature vectpfyre 6: Synthetic random field generated by symmetric

xf; € #°° which is of dimension b because it includes the NSHP model trained on the data in figure 3. Left: states,

feature vectors of the current pixel plus the four neighbors Right: color image. There is no apparent up or down evident
It must be kept in mind that by using extended featuren the synthetic field.

vectors, we are in effect creating a new, higher-dimension




Figure 7:

Synthetic random field generated by non-Figure 9:

Synthetic random field generated by non-

symmetric NSHP model trained on the data in figure 3. Leftsymmetric NSHP model with conditional extended feature
states, Right: colorimage. In contrast to figure 6, there is 4CEF) vectors trained on the data in figure 3. Left: states,

clear notion of up and down evident in the synthetic field.

Right: colorimage.

Welch algorithm for the one-dimensional HMM. We have
also described variations that utilize extended featuctors

to permit effective feature prediction that would not other
wise be possible with doubly-stochastic models. We have
also demonstrated the algorithm’s ability to learn texsure
Based on texture synthesis, the extended feature vectdr (EF
model appears to be superior. We found this also to be the
case in texture classification experiments which space limi

Figure 8: Synthetic random field generated by non-
symmetric NSHP model with extended feature (EF) vectors
trained on the data in figure 3. Left: states, Right: color im-{1]
age.

2
extended feature vectors. Exact is meant in the sense that f[o ]
a fixed set of parameters, it integrates to exactly 1. This is
useful in classification of textures provided all texturedno ]
els being compared use the same EF model. However, if V\Jg
need the PDF of the original field, we must use the condi-
tional PDFs. Let

[ } (4]
Zjj = 3

wherex; j is the feature vector at pixel j andw; j is the g
4D-by-1 vector of features from the four NSHP neighbors.
In the forward procedure, we use in place of the state PDFEG]
the conditional PDFp(x; j|m,w; j). The necessary condi-
tional PDFs can be generated easily from Gaussian mixtures
in closed form, even with more than one mixture component
We synthesize random fields from the CEF model and ob-
tained figure 9. We see a degradation wih respect to figure $8]

X, |
Wij

4. CONCLUSIONS

We have presented a statistical model for two-dimensional
fields of pixels where each pixel is represented by a
continuous-valued feature of arbitrary dimension. The etod

is directly analogous to the one-dimensional hidden Markov
model (HMM). We have described an fast approximate for-
ward procedure that recursively computes the joint PDF of
the entire data field as well as an algorithm for re-estinmatio

of model parameters modeled after the well-known Baum-

tations do not allow us to describe.
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